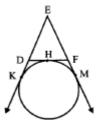
Sample Question Paper - 7 Mathematics-Standard (041)

Class- X, Session: 2021-22 TERM II

Time Allowed: 2 hours Maximum Marks: 40

General Instructions:

- 1. The question paper consists of 14 questions divided into 3 sections A, B, C.
- 2. All questions are compulsory.
- 3. Section A comprises of 6 questions of 2 marks each. Internal choice has been provided in two questions.
- 4. Section B comprises of 4questions of 3 marks each. Internal choice has been provided in one question.
- 5. Section C comprises of 4 questions of 4 marks each. An internal choice has been provided in one question. It contains two case study-based questions.


Section A

1. Is the given sequence: $\sqrt{3}$, $\sqrt{6}$, $\sqrt{9}$, $\sqrt{12}$, ... form an AP? If it forms an AP, then find the common difference d and write the next three terms.

OR

Find the nth term of the AP: 5, 11, 17, 23,

- 2. If x = 2 and x = 3 are roots of the equation $3x^2 2kx + 2m = 0$, find the value of k and m. [2]
- 3. In the adjoining figure, a circle touches the side DF of \triangle EDF at H and touches ED and EF produced at K and M respectively. If EK = 9 cm, then what is perimeter of \triangle EDF?

- 4. A toy is in the form of a cone mounted on a hemisphere with the same radius. The diameter of [2] the base of the conical portion is 6 cm and its height is 4 cm. Determine the surface area of the toy. (Use $\pi = 3.14$)
- 5. If the class mark of a continuous frequency distribution are 12, 14, 16, 18, ..., then find the class intervals corresponding to the class marks 16 and 22.
- 6. Two taps running together can fill a tank in $3\frac{1}{13}$ hours. If one tap takes 3 hours more than the **[2]** other to fill the tank, then how much time will each tap take to fill the tank?

OR

Find the values of k for which the given equation has real roots:

$$5x^2 - kx + 1 = 0$$

Section B

7. Find the median of the following frequency distribution:

Weekly wages (in ₹)	60-69	70-79	80-89	90-99	100-109	110-119
No. of days	5	15	20	30	20	8

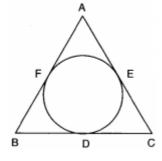
8. Let PQR be a right triangle in which PQ = 3 cm, QR = 4 cm and \angle Q = 90°. QS is the perpendicular from Q on PR. The circle through Q, R, S is drawn. Construct the tangents from P to this circle.

9. The arithmetic mean of the following frequency distribution is 50.

Class	0 - 10	10 - 20	20 - 30	30 - 40	40 - 50
Frequency	16	р	30	32	14

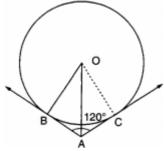
Find the value of p.

10. From a window (60 metres high above the ground) of a house in street the angles of elevation [3] and depression of the top and the foot of another house on opposite side of street are 60° and 45° respectively. Show that the height of the opposite house is $60(1+\sqrt{3})$ metres.


OR

Two boats approach a light house in mid-sea from opposite directions. The angles of elevations of the top of the lighthouse from two boats are 30° and 45° respectively. If the distance between two boats is 100 m, find the height of the lighthouse.

Section C

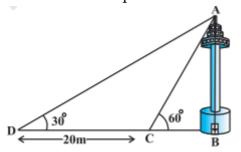

11. The interior of a building is in the form of cylinder of diameter 4.3 m and height 3.8 m, surmounted by a cone whose vertical angle is a right angle. Find the area of the surface and the volume of the building. (Use π = 3.14).

12. In figure the incircle of $\triangle ABC$ touches the sides BC, CA and AB at D, E and F respectively. [4] Show that AF + BD + CE = AE + BF + CD = $\frac{1}{2}$ (Perimeter of \triangle ABC)

OR

In fig., two tangents AB and AC are drawn to a circle with centre O such that $\angle BAC=120^\circ$. Prove that OA = 2AB.

13. A TV tower stands vertically on a bank of a canal. From a point on the other bank of a canal. [4]


From a point on the other bank directly opposite the tower, the angle of elevation of the top of

[3]

[3]

the tower is 60° from a point 20 m away from this point on the same bank the angle of elevation of the top of the tower is 30° .

- i. Find the height of the tower
- ii. Find the width of the canal.
- 14. Deepa has to buy a scooty. She can buy scooty either making cashdown payment of Rs. 25,000 **[4]** or by making 15 monthly instalments as below.

Ist month - Rs. 3425, Ilnd month - Rs. 3225, Illrd month - Rs. 3025, IVth month - Rs. 2825 and so on.

- i. Find the amount of 6th instalment.
- ii. Total amount paid in 15 instalments.

Solution

MATHEMATICS STANDARD 041

Class 10 - Mathematics

Section A

OR

1. From the given information, we can have

$$a_2-a_1=\sqrt{6}-\sqrt{3}$$
 $a_3-a_2=\sqrt{9}-\sqrt{6}=3-\sqrt{6}$ $a_4-a_3=\sqrt{12}-\sqrt{9}=2\sqrt{3}-3 \ (since\sqrt{12}=\sqrt{2}\times 2\times 3=2\sqrt{3})$ since $a_{k+1}-a_k$ is not the same for all values of k.

Hence, it is not an AP.

The given AP is:

5, 11, 17, 23

a = 5

$$d = 11 - 5 = 6$$

So
$$n^{th}$$
 term $a_n = a + (n - 1)d$

$$= 5 + (n - 1) \times 6$$

$$= 5 + 6n - 6$$

$$= 6n - 1$$

Hence n^{th} term = 6n - 1

2. It is given that x = 2 and x = 3 are roots of the equation $3x^2 - 2kx + 2m = 0$.

$$\therefore 3 \times 2^2 - 2k \times 2 + 2m = 0$$
 and $3 \times 3^2 - 2k \times 3 + 2m = 0$

$$\Rightarrow$$
 12 - 4k + 2m = 0 and 27 - 6k + 2m = 0

$$\Rightarrow$$
 12 = 4k - 2m...(i) and 27 = 6k - 2m...(ii)

Solving i and ii equation, we get $k = \frac{15}{2}$ and m = 9

3. We know that tangent segments to a circle from the same external point are Equal. Therefore, we have

$$EK = EM = 9 cm$$

Now, EK + EM = 18 cm

$$\Rightarrow ED + DK + EF + FM = 18cm$$

$$\Rightarrow ED + DH + EF + HF = 18cm$$

$$\Rightarrow ED + DF + EF = 18cm$$

$$\Rightarrow$$
 Perimeter of \triangle EDF $= 18cm$

4. Height of cone = 4 cm

Radius of cone = 3 cm

Slant height of cone (l) =
$$\sqrt{r^2+h^2}$$
 = $\sqrt{3^2+4^2}$ = $\sqrt{9+16}$ = $\sqrt{25}$ = 5 cm

: Surface area of toy = Curved surface area of cone + Curved surface area of hemisphere

$$=\pi rl+2\pi r^2$$
 = 3.14 $imes$ 3 $imes$ 5 + 2 $imes$ 3.14 $imes$ 3 $imes$ 3

$$= 3.14 \times 15 + 3.14 \times 18 = 3.14 \times 33 = 103.62 \text{ cm}^2$$

5. Class marks are 12,14,16......

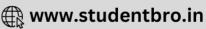
Class size = 2

Class Intervals are
$$11-13,13-15,15-17,17-19,19-21,21-23,\ldots$$
 so on.

6. Two tap running together fill the tank in $3\frac{1}{13}$ hr.

$$=\frac{40}{13}$$
 hours

If first tap alone fills the tank in x hrs.


Then second tap alone fills it in (x + 3) hr

Now
$$\frac{1}{x} + \frac{1}{x+3} = \frac{13}{40}$$

 $\frac{x+3+x}{x(x+3)} = \frac{13}{40}$
 $\frac{2x+3}{x+3} = \frac{13}{40}$

$$\frac{2x+3}{x^2+3x} = \frac{13}{40}$$

$$80x + 120 = 13x^2 + 39x$$

or,
$$13x^2 - 41x - 120 = 0$$

 $13x^2 - (65 - 24)x + 120 = 0$
(x - 5)(13x + 24) = 0
 $x = 5, x = -\frac{24}{13}$

time can't be negative

Hence, 1st tap takes 5 hours and Ilnd tap

takes =
$$5 + 3 = 8$$
 hours

OR

We have,
$$5x^2 - kx + 1 = 0$$
.
a = 5, b = -k and c = 1
∴ D = b² - 4ac = (-k)² - 4 × 5 × 1 = k² - 20
To have a real roots,
 $D \ge 0$
⇒ $k^2 - 20 \ge 0$
⇒ $k \le -\sqrt{20}$ or $k \ge \sqrt{20}$

Section B

7. Here, the frequency table is given in inclusive form. So, we first transform it into exclusive form by subtracting and adding $\frac{h}{2}$ to the lower and upper limits respectively of each class, where h denotes the difference of lower limit of a class and the upper limit of the previous class.

Here, h = 1 So,
$$\frac{h}{2}$$
 = 0.5

Transforming the above table into exclusive form and preparing the cumulative frequency table, we get:-

Weekly wages (in ₹)	No of workers	Cumulative frequency
59.5-69.5	5	5
69.5-79.5	15	20
79.5-89.5	20	40
89.5-99.5	30	70
99.5-109.5	20	90
109.5-119.5	8	98
		N = $\sum f_i$ = 98

We have, N(Total frequency) = 98 Or, $\frac{h}{2}$ = 49

The cumulative frequency just greater than $\frac{h}{2}$ is 70 and the corresponding class is 89.5-99.5. So, 89.5-99.5 is the median class.

Now,

l = 89.5 (lower limit of median class),

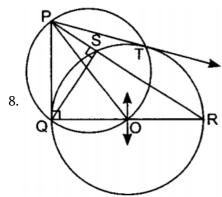
h = 10 (length of interval of median class),

f = 30 (frequency of median class)

F = 40 (cumulative frequency of the class just preceding the median class)

Now, Median is given by:-

$$= 1 + \frac{\frac{N}{2} - f}{F} \times h$$

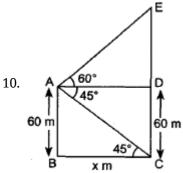

$$= 89.5 + \frac{49 - 40}{30} \times 10$$

$$= 89.5 + 3 = 92.5$$

Steps of Construction:

- i. Draw perpendicular bisector of QR intersecting at O.
- ii. Draw a circle with O as centre and OR as radius.
- iii. Join OP.
- iv. Draw a circle with OP as diameter intersecting the given circle at Q and T. Join PT.
 - .:.PQ and PT are required tangents.
- 9. We have,

Class Interval	Frequency f _i	Mid- value x _i	f_ix_i
0 - 10	16	5	80
10 - 20	р	15	15p
20 - 30	30	25	750
30 - 40	32	35	1120
40 - 50	14	45	630
	$\Sigma f_i = 92 + p$		$\sum f_i x_i = 2580 + 15 p$


Now, mean =
$$\frac{\sum f_i x_i}{\sum f_i}$$

 $\Rightarrow 25 = \frac{2580 + 15p}{92 + p}$

$$\Rightarrow 25(92 + p) = 2580 + 15p$$

$$\Rightarrow$$
 2300 + 25p = 2580 + 15p

$$\Rightarrow$$
 10p = 280

$$\Rightarrow$$
p = 28

Let A be the window and CE be the opposite house

$$CD = AB = 60 \text{ m....(i)}$$

In rt.
$$\triangle$$
ABC, $an 45^{\circ} = rac{60}{ ext{BC}}$

$$\Rightarrow$$
 $1 = \frac{60}{BC}$

$$\Rightarrow$$
 BC = 60m (ii)

$$AD = BC$$

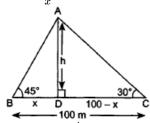
$$\therefore$$
 $AD = 60$ m [From(ii)](iii)

In rt.
$$\triangle$$
ADE, $an 60^{\circ} = rac{ ext{DE}}{ ext{AD}}$

In rt.
$$\triangle$$
ADE, $\tan 60^{\circ} = \frac{\mathrm{DE}}{\mathrm{AD}}$
 $\Rightarrow \sqrt{3} = \frac{DE}{60}$ [From (iii)]

$$\Rightarrow DE = 60\sqrt{3}$$
m

... Height of the opposite house


$$CE = CD + DE = 60 + 60\sqrt{3}$$

$$=60(1+\sqrt{3})$$
m

In right \triangle ADB,

h = x

$$\Rightarrow \frac{h}{x} = \tan 45^{\circ}...(i)$$

Now in rt. $\triangle ADC$

$$rac{h}{100-x}= an 30^\circ$$

Solve for h and x.

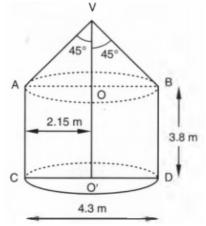
$$\Rightarrow rac{h}{100-x} = rac{1}{\sqrt{3}} \Rightarrow \sqrt{3}h = 100-x$$

$$\Rightarrow \sqrt{3}x = 100 - x$$
 [Using eq.(i)]

$$\Rightarrow (\sqrt{3}+1)x = 100 \Rightarrow x = \frac{100}{\sqrt{3}+1}$$

$$\Rightarrow \quad x = rac{100(\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)}$$

$$ightarrow x = rac{100(\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)}
ightarrow x = rac{100(\sqrt{3}-1)}{2} = 50(\sqrt{3}-1) ext{m}$$


 \therefore h = height of lighthouse = $50(\sqrt{3}-1)$ m

Section C

OR

11. r_1 = Radius of the base of the cylinder = $\frac{4.3}{2}$ m = 2.15 m

 \therefore r₂ = Radius of the base of the cone = 2.15 m, h₁ = Height of the cylinder = 3.8 m

In \triangle VOA, we have

$$\sin 45^{\circ} = \frac{OA}{VA} \Rightarrow \frac{1}{\sqrt{2}} = \frac{2.15}{VA} \Rightarrow VA = (\sqrt{2} \times 2.15) \text{m} = (1.414 \times 2.15) \text{m} = 3.04 \text{m}$$

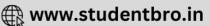
Clearly, \triangle VOA is an isosceles triangle. Therefore, VO = OA = 2.15 m

Thus, we have

 h_2 = Height of the cone = VO = 2.15 m, l_2 = Slant height of the cone = VA = 3.04 m

Let S be the Surface area of the building. Then,

 \Rightarrow S = Surface area of the cylinder + Surface area of cone


$$\Rightarrow$$
 S = $(2\pi r_1 h_1 + \pi r_2 l_2)$ m²

$$\Rightarrow$$
 S = $(2\pi r_1 h_1 + \pi r_1 l_2)$ m² [:: $r_1 = r_2 - 2.15$ m]

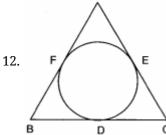
$$\Rightarrow$$
 S = π r₁(2h₁ + l₂) m²

$$\Rightarrow$$
 S = 3.14 \times 2.15 \times (2 \times 3.8 + 3.04) m² = 3.14 \times 2.15 \times 10.64 m² = 71.83 m²

Let U be the volume of the building. Then,

V = Volume of the cylinder + Volume of the cone

$$\Rightarrow \quad V = \left(\pi r_1^2 h_1 + rac{1}{3}\pi r_2^2 h_2
ight) \mathrm{m}^3$$


$$\Rightarrow V = \left(\pi r_1^2 h_1 + \frac{1}{3}\pi r_1^2 h_2\right) \mathrm{m}^3 \quad [\because r_2 = r_1]$$

$$\Rightarrow V = \pi r_1^2 \left(h_1 + rac{1}{3}h_2
ight) ext{m}^3$$

$$\Rightarrow V = 3.14 \times 2.15 \times 2.15 \times \left(3.8 + \frac{2.15}{3}\right) \text{m}^3$$

$$\Rightarrow V = [3.14 \times 2.15 \times 2.15 \times (3.8 + 0.7166)] \text{m}^3$$

$$\Rightarrow V = (3.14 \times 2.15 \times 2.15 \times 4.5166) \text{m}^3 = 65.55 \text{m}^3$$

Since lengths of the tangents from an exterior point to a circle are equal. Therefore,

$$AF = AE [From A] ...(i)$$

Therefore, Adding equations (i), (ii) and (iii), we get,

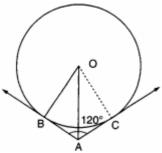
$$AF + BD + CE = AE + BF + CD$$

Now,

Perimeter of $\triangle ABC$ = AB + BC + AC

$$\Rightarrow$$
 Perimeter of $\triangle ABC$ = (AF + FB)+(BD + CD)+(AE + EC)

$$\Rightarrow$$
 Perimeter of $\triangle ABC$ = (AF + AE)+(BF + BD)+(CD + CE)


$$\Rightarrow$$
 Perimeter of $\triangle ABC$ = 2 AF + 2 BD + 2 CE

$$\Rightarrow$$
 Perimeter of $\triangle ABC$ = 2(AF + BD + CE) [From (i), (ii) and (iii), we get AE = AF, BD = BF and CD = CE]

$$\Rightarrow AF + BD + CE = \frac{1}{2}$$
 (Perimeter of $\triangle ABC$)

Hence, AF + BD + CE =
$$\overrightarrow{AE} + BF + CD = \frac{1}{2}($$
 Perimeter of $\Delta ABC)$

In Δ 's OAB and OAC, we have,

$$\angle OBA = \angle OCA = 90^{\circ}$$

OA = OA [Common]

AB = AC [: Tangents from an external point are equal in length]

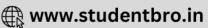
Therefore, by RHS congruence criterion, we have,

$$\Delta OBA \cong \Delta OCA$$

$$\Rightarrow \angle OAB = \angle OAC$$
 [By c.p.c.t.]

$$\therefore \angle OAB = \angle OAC = \frac{1}{2} \angle BAC$$

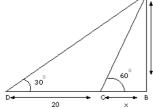
$$=\frac{1}{2}\times120^{\circ}=60^{\circ}$$


$$\Rightarrow \angle OAB = \angle OAC = 60^{\circ}$$

In Δ OBA, we have,

$$\cos \mathbf{B} = \frac{AB}{OA}$$

$$\Rightarrow \cos 60^{\circ} = \frac{AB}{OA}$$



$$\Rightarrow \frac{1}{2} = \frac{AB}{OA}$$

 \Rightarrow OA = 2AB Hence proved.

13.

Let 'h' (AB) be the height of tower and x be the width of the river

In
$$\triangle ABC$$
, $\frac{h}{x}= an 60^\circ$

$$\Rightarrow h = \sqrt{3}x$$
(i)

$$\Rightarrow h = \sqrt{3}x$$
......(i)
In $\triangle ABD$, $\frac{h}{x+20} = \tan 30^\circ$
 $\Rightarrow h = \frac{x+20}{\sqrt{3}}$(ii)

$$\Rightarrow h = \frac{x+20}{\sqrt{3}}$$
(ii)

Equating (i) and (ii),

$$\sqrt{3}x = \frac{x+20}{\sqrt{3}}$$

$$\Rightarrow$$
 3x = x + 20

$$\Rightarrow$$
 2x = 20

$$\Rightarrow$$
 x = 10 m

Put x = 10 in (i),
$$h=\sqrt{3}x$$

$$\Rightarrow h = 10\sqrt{3}$$
m

14. i. 1st installment = Rs. 3425

2nd installment = Rs. 3225

3rd installment = Rs. 3025

and so on

Now, 3425, 3225, 3025, ... are in AP, with

$$a = 3425$$
, $d = 3225 - 3425 = -200$

Now 6th installment = a_n = a + 5d = 3425 + 5(-200) = Rs. 2425

ii. Total amount paid = $\frac{15}{2}$ (2a + 14d)

$$= \frac{15}{2}[2(3425) + 14(-200)] = \frac{15}{2}(6850 - 2800)$$
$$= \frac{15}{2}(4050) = \text{Rs.}30375.$$

$$= \frac{15}{2}(4050) = Rs.30375.$$

